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Abstract

With the increasing penetration of the electric vehicle (EV) in the smart city, the demand for public EV
charging infrastructure is highly required. Therefore, the prosumer community with Building—to—Vehicle
(B2V) systems can serve as EV support equipment (EVSE) is introduced to provide energy to public EVs.
However, the dynamic change of the energy demand of prosumers and the EVs tends to increase the
difficulty of network management. Further, the mismatching problem between the demand and renewable
energy generation of the entire prosumer community leads to the low efficiency of renewable energy
adoption and the high requirement of the power grid support. Thus, to address these issues, firstly, we
leverage the software—defined network (SDN) to reduce network management hardness. Secondly, we
introduce a battery storage system and energy sharing to investigate the energy scheduling problem for
the B2V-enabled prosumer community as EVSE, which aims to minimize the aggregated cost of
purchasing energy from the power grid, while fulfilling the energy demand of EVs and prosumer buildings.
Besides, deep reinforcement learning method with experience replay is proposed for the energy
scheduling problem. Finally, the evaluation results indicate the proposed method can significantly

diminish the energy trading cost with the power grid.

1. Introduction

In recent years, with the rising number of electric
vehicle (EV), demand for EV supply equipment (EVSE)
is increased. Buildings have the potential to provide
energy to EVs with the Building—to—-Vehicle (B2V)
system. Hence, we consider the B2V system installed
prosumer community as the EVSE (PCEVSE) to offer the
energy to EVs. However, renewable energy generation
and energy demand exist the unbalance phenomenon
[1], and both prosumer buildings and EV users’ energy
demands are uncertain. Besides, the dynamic energy
demand causes the hardness of managing the network.
Therefore, it is urgent to introduce an effective energy
scheduling mechanism to address such issues.

Recently, research on energy scheduling has become
popular such as scheduling energy within a smart city
with considering battery storage system for minimizing
renewable energy usage is studied in [2]. In [3], energy

scheduling of a prosumer community that consists of
various types of buildings is proposed to minimize the
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renewable energy utilization. Different from previous
studies, we focus on software-defined network (SDN)
based energy scheduling for PCEVSE to reduce the
hardness of managing the network, and minimize the
overall power grid cost while satisfying the demand of
EVs and buildings.

The main contributions are listed as follows:

e An energy scheduling problem is formulated for
minimizing the PCEVSE trading cost with the
power grid. The public EVs' charging process,
scheduling of battery storage system of PCEVSE
(PCBSS), and energy sharing within the PCEVSE
is considered. However, it is hard to obtain the
optimal PCBSS charging/discharging and energy
sharing. And the dynamic demand for EVs causes
difficulty in managing the network.

e To address such problems, we introduce SDN
network and propose deep reinforcement learning
method with experience replay in SON application
layer to get the best values.

e Finally, we show the proposed approach can
significantly minimize the power grid cost.

2. System Model and Problem Formulation

This section shows the system model with the related
SDON framework as well as the formulation. The system
model composes of roadside unit (RSU), macro base
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station (MBS), power grid, distributed system operator
(DSO), and multiple prosumers p ={12,..,p}, shown in
Fig.1. Each prosumer connects with the DSO equips
with the cloud that is responsible for making the energy
scheduling decision. Besides, each prosumer performs
as the EVSE, which can provide the energy to public
EVs. And it is possible to share energy within the

PCEVSE. Discrete—time slots 7 ={1,2,..,7} and each time
interval ¢eT as an hour duration are considered [4].
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Fig. 2 Conceptual View of SDN Framework -

Fig. 2 introduce the conceptual view of the underlying
SDN framework of the proposed system model. The
data plane consists of physical components: EVSE,
public EVs, power grid, MBS and RSU [5]. The control
plane includes the MBS controller and RSU controller
that performs the management of MBS and RSU. The
application plane is responsible for energy scheduling.

For the PCBSS, the capacity @5S(t+1) at the next
time slot can be denoted as follows [6]:

@37 (1)

DpSS(t + 1) = PESS(t) + £, he(t) - LVtET,

€]
d

where ¢ and ¢, represents the PCBSS charge and

discharge efficiency, respectively. o2%() denotes the

PCBSS capacity at time slot t. o¢(t) shows the energy

charge amount, while ®2¢(t) indicates the discharge

quantity.

For an EV, the charging period is denoted as . In
practice, there exists EV charging loss. Thus, we denote
the EV charging efficiency as n. The actual charging
wg, can be defined by wg, = [‘n«pdr [7]. Here B is
the charging power of the EV. We define the time that
the EV starts to charge is ¢, and finish charging is t....
Therefore, the EV battery (VBSS) capacity oZ55(tmq)

after charge can be obtained as below:
ts+T
O (o) = OHF(e) + [ R, @
tS

where ®555(t,) means the VBSS capacity before charge
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and t is the charging period.

For prosumer p, the load &L(t) can be represented as,
L) = PE() + PPE(t) + PF() + PEE(D), 3)

where ®g(t) defines the demand of each prosumers,
@3 (t) represents the sharing quantity, ®;¢(t) denotes
the energy used for charging the EVs at time slot t. The
sharing loss within same community can be ignored [4].
Hence, the suppliable energy ®%(t) can be denoted by,
DE(t) = DI(t) + DU + dh (D), 4)

where @f(t) denotes the renewable energy generation,
or5(t) indicates the energy received from neighborhood.
Accordingly, for the prosumer p, the purchasing
energy from the power grid, o™ (), at time slot t can

be denoted by,
. 1 _ de : 1 e
Therefore, the energy cost of buying energy from the

power grid costrié(r) can be defined as below [8]:

CostIm4(t) = J.t (6)

where () denotes thet anit buying price from the grid.
The objective of this research is to reduce the
hardness of network management and minimize the
total energy trading cost with the power grid through
scheduling PCBSS charging/discharging operation and
energy sharing while fulfilling the energy demand of EVs

and prosumers. The problem formulation is as follows:

min

@I (L) * §(t)dt,

grid
simepr@ey ), 2, ot @
VpEP VEET

s.t. Yvper PP < Yvper P (8) < Yyper Prciss (8)
PYRYs < PPF(D) < @i )
PR CEIEHORI AR (10)
VpeP VpeP VpeEP
0<é, §3<1,teT. (11)

In problem (7), constraint (8) indicates the limitation
of the total PCBSS of the PCEVSE, while constraint (9)
shows the VBSS capacity requires not more than the
maximum capacity o7& and not less than the minimum
capacity omn . The constraint for the total energy
sharing of PCEVSE at time slot t is shown in (10),
which guarantees the quantity of energy sharing needs
not to exceed the summation of total generation and
PCBSS capacity. PCBSS charge/discharge efficiency
range is denoted in the constraint (11).

3. Solution with Deep Reinforcement Learning Method

This section shows the detailed process of the
proposed approach: DQN with experience replay,
shown in Algorithm 1. In this method, the state space is
defined as S=1{1,2,..,S}, where a state s, €S is the
tuple composed of four elements <gdem, gren gsto z9mid>,

Tt
In detail JEremz5te and E97 represent the total

mdem
’ —-t
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energy demand requirement of the entire prosumer
community, the total renewable energy generation,
storage energy, and the energy buying from the grid at
time slot t. We define each action a, e<a?,af >, where
a? is the decision of buying energy from the power grid,
af is the decision of saving energy into PCBSS. The
goal of this work is to minimize the energy purchasing
cost from the grid. Therefore, we define the immediate
reward as r, = — Xy, @9 (1). In this work, deep neural
network (DNN) is used to approximate the Q network,
where the loss function is defined as,

L(0) = E(5 q)~py [(r + ymaxyQ(s’,a’;0Y) — Q(s,a;6))%].  (12)
Here, s’,a’ and @' denote the next state, next action
and parameter of DNN training in it" iteration,
respectively. The probability distribution over the
sequences s and actions a is defined as p(s,a). After
ONN training, the optimal policy can be obtained by,

Pt (s) = argmaxy QP (s, ay; 0). (13)
Here, Q°Pt(s.,ay; ) is the optimal Q-value via DNN.
Algorithm 1: DQN With Experience Replay for Smart Energy Scheduling

Input: &, &4 PPiEss, PPlRss, PUEEs, PYHS,

Qutput: Cost*

demand, energy_generation

1: Step 1: DRL with experience reply learning stage

2: Randomly initialize the PCBSS capacity s.t (8)

3: Generate EV demand according to uniform distribution s.t (9)

4. Initialize experience replay memory M,Q(s,a,8) with the random
5: for each episode do

6: Get initial state s

7 for t=1,2,--,T do

8: Select random action a, with probability e,

9: Observe the reward 73 and the next state S;r

10: Store the experience (s;, a1, 57) into M

11: Randomly sample the minibatch of the experience from M
12 Update parameter 6 and Q(s,a,8) by minimizing £(0)
13: Update the policy n(s;) = argmax,'Q(s¢, at; 6)

14: Step 2: Obtain the minimize power grid cost

15: Using eq. (6) — (7) get the minimal grid cost: Cost*

16: return Cost™

4. Performance Evaluation

In this research, we use the one—year energy demand
dataset from [9] and solar generation dataset from [10].
The related parameters are ¢, =0958, &, = 0.958, % =
16kWh, ®TUR = 4.8kWh, T = 0kWh, dTE5. = 13.5kWh[2].
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Fig. 3 Power Grid Energy Support of a Randomly Selected Day
Fig. 3 shows the hourly energy support from the
power grid of a randomly selected day in the one-year
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dataset. Through this figure, it can be seen that the
proposed method can significantly reduce the energy
buying from the power grid. Fig. 4 illustrates the energy
trading cost with the power grid of the selected day.
Particularly, with the proposed method, the energy cost
can be reduced from $174.84 to $124.76.
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Fig. 4 Energy Trading Cost with Power Grid of the Selected Day
5. Conclusion

This paper introduced SDN to diminish the hardness
of managing the network of the PCEVSE and proposed
DQN with experience replay approach to minimize the
total energy trading cost with the power grid while
fulfilling the energy demand of EVs and prosumers. The
evaluation results show the proposed method can
significantly reduce the energy cost of buying from the
power grid by $50.08 of the randomly selected day.
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